Lewis Dot Structure Calculator


Every chemistry student has to learn how to draw Lewis Dot Structures. The key is to understand the steps and practice.

Lewis Structures are important to learn because they help us predict:

  • the shape of a molecule.
  • how the molecule might react with other molecules.
  • the physical properties of the molecule (like boiling point, surface tension, etc.).

That helps us understand and predict interactions with things like medicine and our body, materials used to make buildings and airplanes, and all sorts of other substances. Lewis structures don't tell us everything, but along with molecule geometry and polarity they are hugely informative.


Search 100+ Lewis Structures on our site.
(Opens new window.)

Click the Chemical Formula to see the Lewis Structure

Acetone(C3H6O)
AsCl3(Arsenic Trichloride)
AsF3(Arsenic Trifluoride)
AsF5(Arsenic Pentafluoride)
AsF6-(AsF6-)
AsH3(Arsenic Trihydride)
AsO33-(Arsenite Ion)
BBr3(Boron Tribromide)
BCl3(Boron Trichloride)
BF3(Boron Trichloride)
BF4-(Tetrafluoroborate Ion)
BH3(Boron Hydride)
BH4-(BH4-)
B(OH)3(B(OH)3)
BeCl2(Beryllium Chloride)
BeF2(Beryllium Fluoride)
BeH2(Beryllium Hydride)
Br2(Bromine Gas or Elemental Bromine)
Br3-(Tribromide Ion)
BrF(Bromine Monofluoride)
BrF2(Bromine Difluoride)
BrCl3(Bromine Trichloride)
BrF3(Bromine Trifluoride)
BrF5(Bromine Pentafluoride)
BrO-(Hypobromite Ion)
BrO2-(Bromite Ion)
BrO3-(Bromate Ion)
C22-(Dicarbide Ion)
CBr4(Carbon Tetabromide)
CCl4(Carbon Tetachloride)
ClF(Chlorine Monofluoride)
CF2Cl2(Dichlorodifluoromethane)
CH2Cl2(CH2Cl2)
CH3-(CH3-)
CH3Br(CH3Br)
CH3Cl(Chloromethane or Methyl Chloride)
CH3CN(Acetonitril or Methyl Cyanide)
CH3COO-CH3COO-
CH3COOH(Acetic Acid)
CH3F(CH3F)
CH3NH2(Methylamine)
CH3NO2(CH3NO2)
CH3OCH3(Dimethyl Ether or Methoxymethane)
CH3OH(Methanol or Methyl Alcohol)
CH4(Methane)
C2F4(C2F4)
C2H2(Ethyne or Acetylene)
C2H2Br2(C2H2Br2)
C2H2Cl2(C2H2Cl2)
C2H4(Ethene)
C2H6(Ethane)
C2H6OC2H6O
C3H6(C3H6)
C3H8(Propane)
C4H10(Butane)
C6H6(Isomers - including Benzene)
C6H12(C6H12)
CHCl3(Chloromethane)
CH2F2(Difluoromethane)
CH2O(Methanal or Formaldehyde)
CH4O(CH4O)
Cl2(Chlorine Gas or Elemental Chlorine)
Cl2CO(Cl2CO)
Cl2O(Dichlorine Monoxide)
Cl3PO(Phosphoryl Trichloride)
ClF3(Chlorine Trifluoride)
ClF5(Chlorine Tetrafluoride)
ClO-(Hypochlorite Ion)
ClO2(Chlorine Dioxide)
ClO2-(Chlorite Ion)
ClO3-(Chlorate Ion)
ClO4-(Perchlorate Ion)
CO(Carbon monoxide)
CO2(Carbon Dioxide)
CO32-(Carbonate Ion)
COCl2(COCl2)
COF2(COF2)
COH2(COH2)
CN-(Cyanide Anion)
CS2(Carbon Disulfide)
F2(Fluorine Gas, Difluorine)
H2(Hydrogen Gas or Elemental Hydrogen)
H2CO(Formaldehyde or Methanal)
H2CO3(Carbonic Acid)
H2O(Water or Dihydrogen monoxide)
H3O+(Hydronium Ion)
H2O2(Hydrogen Peroxide or Dihydrogen Dioxide)
HBr (Hydrogen Bromide or Hydrobromic Acid)
HF (Hydrogen Fluoride or Hydrofluoric Acid)
HCCH (Ethyne)
HCl (Hydrogen Chloride or Hydrochloric Acid)
HCO2- (Formate Ion)
HCO3- (Hydrogen Carbonate Ion or Bicarbonate Ion)
HCOOH (Methanoic Acid or Formic Acid)
HI (Hydrogen Iodide or Hydroiodic Acid)
HClO3 (Chloric Acid)
HCN (Hydrogen Cyanide)
HNO2 (Nitrous Acid)
HNO3 (Nitric Acid)
H2S (Dihydrogen Sulfide)
HOCl (Hypochlorous Acid)
H2Se(Dihydrogen Selenide)
HSO3- (Bisulfite Ion)
HSO4- (Bisulfate Ion)
H2SO3 (Sulfurous Acid)
H2SO4 (Sulfuric Acid)
H3PO4 (Phosphoric Acid)
I2(Iodine Gas or Elemental Iodine)
I3-(I3-)
IBr2- (IBr2-)
ICl (Iodine Chloride)
ICl2- (ICl2-)
ICl3 (ICl3)
ICl4- (ICl4-)
ICl5 (Iodine Pentachloride)
IF2- (IF2-)
IF3 (Iodine Trifluoride)
IF4- (IF4-)
IF5 (Iodine Pentafluoride)
IO3- (Iodate Ion)
IO4- (Perioiodate Ion)
N2(Nitrogen Gas, also called Elemental Nitrogen)
N3-(Azide Ion)
N2F2 (Dinitrogen Difluoride)
N2H2 (Dinitrogen Dihydride)
N2H4 (Dinitrogen Tetrahydride or Hydrazine or Diamine)
N2O3 (Dinitrogen Trioxide)
N2O4 (Dinitrogen Tetroxide)
N2O5 (Dinitrogen Pentoxide)
NCl3(Nitrogen Trichloride)
NF3(Nitrogen Trifluoride)
NH2-(NH2-)
NH2Cl(Chloroamine)
NH2OH(Hydroxylamine)
NH3(Ammonium or Nitrogen Trihydride)
NH4+(Ammonium Ion)
NI3(Nitrogen Triiodide)
NO+(Nitrosonium Ion)
NO(Nitric Oxide or Nitrogen Monoxide)
N2O(Nitrous Oxide or Dinitrogen Monoxide)
NO2(Nitrogen Dioxide)
NO2-(Nitrite Ion)
NO2Cl(NO2Cl)
NO2F(NO2F)
NO3-(Nitrate Ion)
NOBr (Nitrosyl Bromide)
NOCl (Nitrosyl Chloride)
NOF (Nitrosyl Fluoride)
O2(Oxygen Gas, also called Elemental Oxygen)
O22-(Perioxide Ion)
O3(Ozone)
O3O3 Resonance Structures
OCl2(OCl2)
OCN-(Cyanate Ion)
OCS(OCS)
OF2(Oxygen Difluoride)
OH-(Hydroxide Ion)
PBr3Phosphorus Tribromide
PBr5Phosphorus Pentabromide
PCl3Phosphorus Trichloride
PCl4-PCl4-
PCl5Phosphorus Pentachloride
PF3Phosphorus Trifluoride
PF5Phosphorus Pentafluoride
PF6-Hexafluorophosphate Ion
PH3Phosphorus Trihydride
POCl3Phosphoryl Chloride or Phosphorus Oxychloride
PO33-(Phosphite Ion)
PO43-(Phosphate Ion)
SBr2(Sulfur Dibromide)
SCl2(Sulfur Dichloride)
SCl4(Sulfur Tetrachloride)
SCN-(Thiocyanate)
SeF4(Selenium Tetrafluoride)
SeF6(Selenium Hexafluoride)
SeO2(Selenium Dioxide)
SF2(Sulfur Difluoride)
SF4(Sulfur Tetrafluoride)
SF6(Sulfur Hexafluoride)
S2Cl2(Diulfur Dichloride)
SiCl4(Silicon Tetrachloride)
SiF4(Silicon Tetrafluoride)
SiF62-(Silicon Hexafluoride Ion)
SiH4(Silicon Tetrahydride)
SiO2(Silicon Dioxide)
SnCl2(Tin (II) Chloride)
SOCl2(SOCl2)
SO2(Sulfur Dioxide)
SO3(Sulfur Dioxide)
SO32-(Sulfite Ion)
SO42-(Sulfate Ion)
Water (H2O)
XeCl4Xenon Tetrachloride
XeF2XeF2
XeF4Xenon Tetrafluoride
XeF6Xenon Hexafluoride
XeH4XeO4
XeO3XeO3
XeO2F2XeO2F2

Steps for Writing Lewis Structures

  1. Find the total valence electrons for the molecule. Explain How Examples: H2S, NCl3, OH-

  2. Put the least electronegative atom in the center.
    Note: H always goes outside.
    Examples: NOCl, CF2Cl2, HCN

  3. Put two electrons between atoms to form a chemical bond. Examples: CH4, NH3, I2

  4. Complete octets on outside atoms.
    Note: H only needs two valence electrons.

  5. If central atom does not have an octet, move electrons from outer atoms to form double or triple bonds.
    Examples: O2, N2, C2H4

  6. Advanced Steps

  7. If you have extra electrons after the above steps add them to the central atom. Note: elements in the Period Three (usually S, P, or Xe) can have more than eight valence electrons.
    Examples: ClF3, SF4,XeH4

  8. Check the Formal Charges to make sure you have the best Lewis Structure. Explain How
    Examples: SO42-, N2O, XeO3

Notable Exceptions to the Octet Rule

  • H only needs 2 valence electrons.
  • Be and B don’t need 8 valence electrons.
  • S and P sometimes have more than 8 val. Electrons.
  • Elements in Period Three, Four, etc (on the periodic table) can hold more than 8 valence electrons.

What is a Lewis Diagram?

Lewis diagrams, also called electron-dot diagrams, are used to represent paired and unpaired valence (outer shell) electrons in an atom. For example, the Lewis diagrams for hydrogen, helium, and carbon are

where the symbol represents the element (in this case, hydrogen, helium, and carbon) and the dots represent the electrons in the outer shell (in this case, one, two, and four). These diagrams are based on the electron structures learned in the Atomic Structure and Periodic Table chapters.

What is a Lewis Structure?

Worksheet - Lewis Dot. For each of the following, draw the Lewis Dot Structure, give the electron arrangement (E.A.) and the molecular geometry (M.G.): PF 5. This demo will convert a skeletal figure, provided by a drawing in the HTML5 SketcherCanvas component on the left, into a Lewis Dot Structure in the Canvas on the right. When you are finished drawing your 2D structure, click on the Get Lewis Dot Structure button to see the result. This feature is customizable with publication quality graphics output in ChemDoodle 2D. A Lewis dot structure is a drawing of a molecule. The drawing only “works” f0r stable molecules that actually exist. So it’s a nice tool to explore how atoms bond into more complex substances. A Lewis dot structure is also called a Lewis structure, a Lewis dot diagram, an electron dot structure, or a dot diagram. A step-by-step explanation of how to draw the CNCl Lewis Dot Structure.For the CNCl Lewis structure, calculate the total number of valence electrons for the.

The Lewis structure is used to represent the covalent bonding of a molecule or ion. Covalent bonds are a type of chemical bonding formed by the sharing of electrons in the valence shells of the atoms. Covalent bonds are stronger than the electrostatic interactions of ionic bonds, but keep in mind that we are not considering ionic compounds as we go through this chapter. Most bonding is not purely covalent, but is polar covalent (unequal sharing) based on electronegativity differences.

The atoms in a Lewis structure tend to share electrons so that each atom has eight electrons (the octet rule). The octet rule states that an atom in a molecule will be stable when there are eight electrons in its outer shell (with the exception of hydrogen, in which the outer shell is satisfied with two electrons). Lewis structures display the electrons of the outer shells because these are the ones that participate in making chemical bonds.

How to Build a Lewis Structure?

For simple molecules, the most effective way to get the correct Lewis structure is to write the Lewis diagrams for all the atoms involved in the bonding and adding up the total number of valence electrons that are available for bonding. For example, oxygen has 6 electrons in the outer shell, which are the pattern of two lone pairs and two singles. If the electrons are not placed correctly, one could think that oxygen has three lone pairs (which would not leave any unshared electrons to form chemical bonds). After adding the four unshared electrons around element symbol, form electron pairs using the remaining two outer shell electrons.

Incorrect StructureCorrect Structure
are two hydrogen atoms and one oxygen atom. The Lewis structure of each of these atoms would be as follows:

One good example is the water molecule. Water has the chemical formula of H2O, which means there

We can now see that we have eight valence electrons (six from oxygen and one from each hydrogen). With few exceptions, hydrogen atoms are always placed on the outside of the molecule, and in this case the central atom would be oxygen. Each of the two unpaired electrons of the oxygen atom will form a bond with one of the unpaired electrons of the hydrogen atoms. The bonds formed by the shared electron pairs can be represented by either two closely places dots between two element symbols or more commonly by a straight line between element symbols:

Let us try another one.


Example: Write the Lewis structure for methane (CH4).
Answer:Hydrogen atoms are always placed on the outside of the molecule, so carbon should be the central atom.

After counting the valence electrons, we have a total of 8 [4 from carbon + 4(1 from each hydrogen] = 8.

Each hydrogen atom will be bonded to the carbon atom, using two electrons. The four bonds represent the eight valence electrons with all octets satisfied, so your structure is complete.


Example: Write the Lewis structure for carbon dioxide (CO2).

Answer:Carbon is the lesser electronegative atom and should be the central atom.

After counting the valence electrons, we have a total of 16 [4 from carbon + 2(6 from each oxygen)] = 16.

Each oxygen atom has two unshared electrons that can be used to form a bond with two unshared electrons of the carbon atom, forming a double bond between the two atoms. The remaining eight electrons will be place on the oxygen atoms, with two lone pairs on each.

Lewis Structures of Polyatomic Ions

Lewis Dot Structure For Ionic Compounds Calculator

Building the Lewis Structure for a polyatomic ion can be done in the same way as with other simple molecules, but we have to consider that we will need to adjust the total number of electrons for the charge on the polyatomic ion. If the ion has a negative charge, the number of electrons that is equal to the charge on the ion should be added to the total number of valence electrons. If the ion has a positive charge, the number of electrons that is equal to the charge should be subtracted from the total number of valence electrons. After writing the structure, the entire structure should then be placed in brackets with the charge on the outside of the brackets at the upper right corner.


Example: Write the Lewis structure for the ammonium ion (NH4+).
Answer: Hydrogen atoms are always placed on the outside of the molecule, so nitrogen should be the central atom.

After counting the valence electrons, we have a total of 9 [5 from nitrogen + 4(1 from each hydrogen)] = 9. The charge of +1 means an electron should be subtracted, bringing the total electron count to 8.

Each hydrogen atom will be bonded to the nitrogen atom, using two electrons. The four bonds represent the eight valence electrons with all octets satisfied, so your structure is complete. (Do not forget your brackets and to put your charge on the outside of the brackets)


Example: Write the Lewis structure for the hydroxide ion (OH-).

Answer: Since there are only two atoms, we can begin with just a bond between the two atoms.

After counting the valence electrons, we have a total of 7 [6 from Oxygen + 1 from each Hydrogen)] = 7. The charge of -1 indicates an extra electron, bringing the total electron count to 8.

Oxygen will be bonded to the hydrogen, using two electrons. Place the remaining six electrons as three lone pairs on the oxygen atom. All octets are satisfied, so your structure is complete. (Do not forget your brackets and to put your charge on the outside of the brackets)


Lewis Structures for Resonance Structures

The existence of some molecules often involves two or more structures that are equivalent. Resonance can be shown using Lewis structures to represent the multiple forms that a molecule can exist. The molecule is not switching between these forms, but is rather an average of the multiple forms. This can be seen when multiple atoms of the same type surround the central atom. When all lone pairs are placed on the structure, all the atoms may still not have an octet of electrons. To deal with this problem, the atoms (primarily in a C, N, or O formula) form double or triple bonds by moving lone pairs to form a second or third bond between two atoms. The atom that originally had the lone pair does not lose its octet because it is sharing its lone pair. Double-headed arrows are placed between the multiple structures of the molecule or ion to show resonance.

Ionic Lewis Dot Structure Calculator

Let us look at how to build a nitrate ion (NO3-).

Nitrogen is the least electronegative atom and should be the central atom.

After counting the valence electrons, we have a total of 23[5 from nitrogen + 3(6 from each oxygen)] = 23. The charge of -1 indicates an extra electron, bringing the total electron count to 24.

Each oxygen atom will be bonded to the nitrogen atom, using a total of six electrons. We then place the remaining 18 electrons initially as 9 lone pairs on the oxygen atoms (3 pairs around each atom).

Although all 24 electrons are represented in the structure (two electrons for each of the three bonds and 18 for each of the nine lone pairs), the octet for the nitrogen atom is not satisfied. To satisfy the octet rule for the nitrogen atom, a double bond needs to be made between the nitrogen and one of the oxygen atoms. Because of the symmetry of the molecule, it does not matter which oxygen atoms is chosen. Because there are three different oxygen atoms that could form the double bond, there will be three different resonance structures showing each oxygen atom with a double bond to the nitrogen atom. Double-headed arrows will be placed between these three structures. (Do not forget your brackets and to put your charge on the outside of the brackets)


Calculator

Example: What is the Lewis structure for the nitrite ion (NO2)?

Answer: Nitrogen is the least electronegative atom and should be the central atom.

After counting the valence electrons, we have a total of 17 [5 from nitrogen + 2(6 from each oxygen)] = 17. The charge of -1 indicates an extra electron, bringing the total electron count to 18.

Each oxygen will be bonded to the nitrogen, using two electrons. Place the remaining 16 electrons initially as nine lone pairs on the oxygen atoms (3 pairs around each atom) and the nitrogen (one pair).

Although all 18 electrons are represented in the structure (2 electrons for each of the two bonds and 14 for each of the seven lone pairs), the octet for the nitrogen atom is not satisfied. To satisfy the octet rule for the nitrogen atom, a double bond needs to be made between the nitrogen atom and one of the oxygen atoms. Because of the symmetry of the molecule, it does not matter which oxygen is chosen. Because there are two different oxygen atoms that could form the double bond, there will be two different resonance structures showing each oxygen atom with a double bond to the nitrogen atom. A double-headed arrow will be placed between these structures. (Do not forget your brackets and to put your charge on the outside of the brackets)

Lewis Structures for Electron-rich Compounds

Elements with atomic number greater than 13 often form compounds or polyatomic ions in which there are “extra” electrons. For these compounds we proceed as above. Once all of the octets are satisfied, the extra electrons are assigned to the central atom either as lone pairs or an increase in the number of bonds. (Never use multiple bonds with these compounds—you already have too many electrons.)

Lewis Dot Structure Bond Calculator

Example: Draw the Lewis structure for phosphorus pentafluoride, PF5.

Answer:

Lewis Dot Structure Calculator With Dots

The electronegativity of fluorine is greater than that of phosphorus—so the phosphorus atom is placed in the center of the molecule.

The total number of electros is 40 [5(7 from each fluorine) + 5 from the phosphorus] = 40. Using a single bond between the phosphorus atom and each of the fluorine atoms and filling the remaining electrons to satisfy the octet rule for the fluorine atoms accounts for all 40 electrons. Note that there are five bonds around the central atom.

Lewis Structures for Electron-poor Compounds

There is another type of molecule or polyatomic ion in which there is an electron deficiency of one or more electrons needed to satisfy the octets of all the atoms. In these cases, the more electronegative atoms are assigned as many electrons to complete those octets first and then the deficiency is assigned to the central atom.

Example: Draw the Lewis structure for boron trifluoride, BF3.

Answer:The electronegativity of fluorine is greater than that of boron—so the boron atom is placed in the center of the molecule.Calculator

The total number of electron is 24 [3(7 from each fluorine) + 3 from boron] = 24. Using a single bond between the boron and each of the fluorine atoms and filling the remaining electron as lone pairs around the fluorine atoms to satisfy the octets accounts for all 24 electrons.

The boron atom is two electrons shy of its octet. You may ask about the formation of a double bond (and even resonance). But, fluorine and boron are not in the list that can form double bonds (C, N, O, P, S) and so the compound is electron poor.

Try It Out!

Lewis Dot Structure Calculator

Draw the Lewis structure for the following:

Chemistry Lewis Dot Structure Calculator

  1. Hydronium ion (H3O+)
  2. Hypochlorite ion (ClO-)
  3. Carbonate ion (CO3-2)
  4. Ammonia (NH3)
  5. Hydrogen fluoride (HF)
  6. Ozone (O3)
  7. Xenon difluoride (XeF2)